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1. We consider a thin anisotropic shell of constant thickness h. 
Assume that the material of the shell obeys the generalized Hooke’s law 

and that at each point there is only one plane of elastic syuvaetry, 

parallel to the middle surface of the shell. The latter surface will be 

used as surface of coordinates, and the shell will be referred to curvi- 

linear orthogonal coordinates s and p, which coincide with the principal 

curvature lines of that surface. Let y represent the distance, measured 

along the normal, between the point (a, /3) of the middle surface and the 

point (a, /3, y) of the shell. We assume that 

(a) the line elements of the shell, normal to the middle surface, do 

not change their lengths after deformation; 

(b) the normal stresses* o,, are small as compared with the stresses 

ua,o andr 
P $3; 

(c) the shear stresses 

thickness of the shell in 

bola f 13 I . 

ray and 'PY 
vary in the direction of the 

accordance wrth the law of the quadratic para- 

king more rigorous in the formulation of the hypotheses [ 2,s 1 , we 
can state here the assumptions (a) and (I) in the following form: 

(a) e 
w= 

0 approximately; 

(b) the stresses ui do not exert any essential influence on the strain 

components eaa 
and “ss 

and they can be neglected in the corresponding 

equations of the generalized Hooke’s law. 

2. By virtue of the assumption (~1 concerning the shear stresses r 

and r~,, we have 
ay 

x+-x- 
%vf - 2 +XV++X-)++!p-$)p(a, p, 

y+-y- 
%Y== 2 + -$(Y’ + u-) + +(r’-q)$(., B) (2-l) 

* Here and in the following we adopt the well-known notations used in 
the theory of shells. 
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where A” (a, p), Y+ (a, fl) and X’ (a, f3), Y- (a, fl) are the components 
along the axes of the moving trihedron (in the directions of the positive 
tangents to the lines /3 = const., a = const., respectively) of the in- 
tensity vectors of the surface loads, applied to the boundary surfaces 

Y =%h andy=-%h, respectively, while $(a, @), t,!&z, f3) are unknown 
functions. Substituting the values of the tangential stresses r 
from (2.1) into the corresponding equations of the generalized % o$sr13Y 

law 16 I, we obtain for the shear strain components e 
formulas 

aY 
and eBY the 

Here we have introduced the following notations: 

x = a [Ub6 (x+ - x-) + UA5 (Y’ - r-)] 

Y = f [a44 (Y” - Y-) + a45 (X’ - x-)1 
(2.3) 

X’=a,5(X++x-)+a*,(I-++Y-) 

Y’ = lx,, (Y’ -f- Y-j + lQ6 (X’ + x-j 

where the quantities aik are elastic constants [ 6 I . 

From the equations of the three-dimensional theory of elasticity we 
have for the strain components [ 1 1 

(2.7) 

(2.9) 

H,=A(lfk,y), 1r2=B(l+k,y) (2.10) 

In these formulas A = A(a, f3) and 3 = BCa, j3) are the coefficients of 
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the first quadratic form of the middle surface, k, = k (a, @> and 

k, = kZ(a, ,5?> are the principal curvatures of the midd e f surface, 

% = ~,(a, /3, y), up = u 

ment components of an g 

(a, f3, y) and 
p="/ 

(a, /3, y) are the displace- 

ar itrary point 0 the shell in the directions of 

the tangents to the coordinate lines, respectively. 

& the basis of the assumption (a) we find from (2.7) 

&L 

$ = 0, lly = +(a, /3) = w(a, f3) (2.11) 

Thus, like in all existing theories of thin shells, the displacement 

"r 
of any point of the shell is independent of the coordinate y. This 

displacement component has for all points of a line element of a normal 

to the shell a constant value, equal to the normal displacement component 

w = ~(a, 6) of the corresponding point of the middle surface of the shell. 

Substituting the expressions for e , ep,, 
(2.10) and (2.11) into equations (2.9y we 

HII H2 and u,, from (2.2), 
obtain differential equations 

for the displacement components ua and UP. Integrating these equations 

and taking into consideration that ua = ~(a, 8) and u 
a 
= ~(a, /I) when 

y = 0, we find 

(2.12) 

up = (1 + k2Y) u - -$- a+ - Y(l +y $)$(D,+ 

where u = u(a, /!I), tr = ~(a, /!3> are the tangential displacement components 

of the corresponding point of the middle surface. 

In the process of deriving the formulas (2.12) the accuracy was being 

confined to consideration of quantities up to those of the order of 

magnitude of yki, i.e. whenever a sufficiently precise estimation was 

possible, terms of the order of magnitude of (yki)2 were being neglected 

in comparison with unity. 

Our formulas (2.12) show that, in contrast to known theories of thin 

shells [ 1,2,5,7 I, the tangential displacement components ua and u 
P .Of 

any point of the shell at a distance y from the middle surface are, in 

the case considered here, as in the publications [ 8,9 1, non-linear 

functions of the distance y. 

By virtue of (2.12) the strain components eaa, e 
PP' e4 

can be ex- 

pressed by ~l~~ials in powers of y, namely 
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(2.13) 

Substituting the values of Us, u from (2.12) and (2.111, respect- 

ively, into the relations (2.6) an~~2~~~, and comparing the resulting 

expressions for the strain components eaa, e 
Pp * .“aP 

with the corres- 

ponding expressions (2.131, we obtain the fol owing formulas for the 

coefficients of the expansions: 

(2.14) 
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h = 1 1 aa --- 
6 B aft 

--- ; ;B$G?2+ f[+&$ (k,X’)- -++$- + 

+x- * k &$$X’] + +[+&$(kpY’)- 

- $kl.;.a$ _j_ _.;__ k 1 aB __ y’ 
2As aa I 

(2.25) 



310 S.A. Arbor tsuaian 

In formulas (2.17) to (2.19) we have, in conformity with the usual 

definition of curvature changes and torsion of the middle surface of the 

shell 12,s I, 

1 a 
Xl0 = - -,;*- -a; 1 aw u 1 a.4 1 aw -- ..-. _ - - - --- -.I._.- -- 

A aa H, > ( AB a? B a? ii2 > 

x20 = - 1 a 

( 

iaw v 1 al3 1 aw ii -~~--- - . _-- 
1 

_ ______ 
R ag n ag Rz AB aa i 

_ __ _ _-- 
A aa N1 > 

2 .p=-_ 
( 

8% 1 aA& f ai3 aw - _ - .~. .- _ ._- _ __. _._. . - 
ns da ap A $3 da R da a,3 ) 

-I- 

(2.29) 

(2.30) 

(2.31) 

where R, = Rl(a, ,k?) and R, = RZ(a, ,d> are the principal radii of curva- 
ture of the middle surface. 

Considering the expansions (2.13) we note that they have some similar- 

ity with the analogous expansions used in ref. El 1 ; the similarity is, 

however, only a superficial one. In the determination of the strain com- 

ponents eaa, e 

powers of y ke!Zj%gea8 

ref. [l] actually uses expressions in terms of 

at the same time the hypothesis of non-deformable 

normals C 1,2 I, while in the present paper, as in the publications [8,9 I, 

the relations (2.13) are being obtained on the basis of the basic 

assumptions of the theory offered here. 

On the basis of (2.13) and of the original assumption (b) we derive 

from the generalized Hooke's law the following expressions for the stress 

components iraa, agp, ~4 : 

=a = 4~ + &+a + &ciw + Y (&xx, + &A -t 

-I- B,,4 + y2 P,,ril + B,,rlz -i k-4 + y” PWI + 

+ %A + &A) + u” @WI + &b + &t&) (2.32) 

= Baasa + &A + B,sw + Y(&A + &A + 

.%a4 + Y” (&zriz -t- B nri, + B,,4 + r’ V&&z + 

+ &z% + &d) + y” (B& + &,E, + %I) (2.33) 

~a = &,a, + &A + %,a + y(&exr + &A + &A + 

+ua VMir f Bzsrlz + &,v) + y3 (&A C B&z + B,,Q + 

-+ y" (R& + Be& + B& (2.34) 

In these formulas the constants Bik are given by the following express- 
ions in terms of the elastic constants aiR [lo,111 : 
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T ‘$t ~tges~ ;1p4, CX~“, ‘4, rQy, rpr prodye internal_fmces (‘fit 
an moments (M1, M , HI, which must satisfy the 

f~~loZ,ng2~at~L.icZ,1 conditions [ 1, 2, 51: 

& (BT,) - T, ;$ + A- (AS,) + S, $ + ABk,N, = - ABX” 

-$ (ANTE) - I’, ;$ + &- (BS,) + S, 7; + ABk,N, = - ABY 

- (k,T, + J&T,) + $&&-(BN1)+ $- (AN,)] = - 2’ (2.36) 

&(BH)+H’& +-&(AM,)-M+ABN,=O 

ix (AH) + H ;+ + -& (B&f,) -M, ;; - ABNl = 0 

S,-SS,+klH-kk,H=O 

In these formulas the symbols 

X’ = X’(a, p), f” = Y’(a, f3), Z*= 2Y(a, f3) 

represent the components of the intensity vector of the applied surface 

load, referred to the middle surface of the shell [ 7 1 , namely 

P=P+(i+~)(l+~)+P-(l--)(~-~) (2.37) 

where P stands generally for X, Y, 2. 

‘Ihe stress resultants appearing in (2.36) are determined in the usual 

manner [l, 2, 10 I. Without going into details, we give here the simplest 

elasticity formulas, which identically satisfy the sixth equation of 

statics: 
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(2.41) 

N, = t (X’ - X-) - $- cp (a, p) (2.45) 

N, =+(Y+ -Y-)--$-+(a,B) (2.46) 

In these relations we have the following formulas for the rigidity 
constants Ci, of compression and Di, of bending: 

Cik = hBi&, Dik = +Z-3ie (2.47) 

We state here that, in the process of substitution of the values of 

El’ 
. . . . 6, all terms containing X and Y can be omitted, still maintain- 

ing a sufficiently high degree of accuracy [7 I, in all elasticity 

relations. 

Using the formulas (2.29), (2.30), we can eliminate the displacement 

components u, v, I of the middle surface from the relations (2.14) to 

(2.16); this leads to 

The equation (2.48) is the third continuity relation for the deforma- 

tion of the middle surface of the shell. As it should be expected, the 

relation does not differ in any way from the corresponding relation of 

the classical theory of thin shells [2, 5 I. The remaining two conditions 

of continuity for the deformation of the middle surface will not be 

needed in the present paper. 

'lhe equations (2.14) to (2.31), (2.36), (2.38) to (2.46) taken to- 

gether represent a complete system of equations of the theory of shells. 
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It is known [1,2,5 1 that such a complete system can be established in 
various ways. In view of its extreme complexity in the general case of a 
shell of arbitrary form, the complete system of equations will be con- 
sidered here for one practically important type of shell only. 

In the process of solving actual boundary value problems the differ- 
ential equations of the shell have to be completed in the usual manner by 
statement of the boundary conditions [1,2,3 I . 

3. Avoiding discussion of details, we mention here some possible 
special types of boundary conditions. 

Free edge. ‘Ibis designation will characterize such an edge (a = const.) 
of the shell, for which 

M 1 =O, H =O, S, = 0, T, =0, iV,=O (3.1) 

Simply supported edge. This designation will be used for such an edge 
(a = const. 1 of the shell, for which 

M 1=O, T,=O, w=O, v = 0, II,,01 + B&. + B,,h = 0 (3.2) 

Fixed edge with a hinge. This designation characterizes such an edge 
(a = const. 1 of the shell, for which 

M,=O, u=O, v=O, W= 0, +=o (3.3) 

Clamped edge. ‘Ihis designation refers to such an edge (a = const. 1 of 
the shell, for which 

u=o , v=o, w=o, qJ=o 

1 aw -. _- 
A 6u 

-lck,u~+qD,=O (3.41 

Of course, other boundary conditions are still possible. 

The boundary conditions for an edge 6 = const. can be stated in an 
analogous manner. 

Concluding this Section we note that the subject of the boundary con- 
ditions requires special investigations. 

A detailed study of the results presented in the first three Sections 
of this paper reveals the following fact: the special case, characterized 
by au4 = 0, as5 = 0, a,,5 = 0, leads to the basic relations and equations 
of the theory of anisotropic shells based upon the hypotheses of non- 
deformable normals. 

4. Consider a shell in the form of a circular cylinder of radius R. 
We take the a and p coordinate lines to be directed along the generators 
and the parallel circles of the middle surface, respectively. Assume 
that the shell is being acted upon by normally applied loading only. For 
such a shell 
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A = const, B = eonst, k, = 0, kz = -$ 

The coefficients of the expansions (2.13) are 

1 au 1av 1 
Es= B@-+ -B-w, 

1 au 
W==v- + 

1 av 
E1 = A xi ’ 

-- 
A aa 

1 aaw h2 1 a@, 
%l=---__-.-.- 

A2 ~3~2 6 A aa 

1 i32w x2=:--- 
1 1 au ha 1 L’@)z 

~2 ap 
.+_-__-_8_Ba3 

R Bag 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

l'he equations of equilibrium assume the form 

.d$!%+ $.a$++N2=0, 

I aw 1 aM2 --- 
A da + 3 ag N 2==0 

+-a$+fa+-N1=O (4.7) 

Substitut ing the expressions for tl, . . . . (= from (4.2) to (4.6 1 into 
the formulas (2.38) to (2.46), we obtain the stress resultants in terms 

of the unknown functions u, v, W, gS, $. Substituting the obtained express- 

ions of the stress resultants into the equations of equilibrium (4.7), we 

find a final system of the five differential equations for the five un- 

known functions u, u, m, 4, 9% namely 

+ Q* (Cik, aik) J, + Q6 (Cikr ‘%k) ‘9 = 0 (4.8) 



(4.9) 

(4.10) 

(4.11) 

(4.12) 
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Thus, the problem of the anisotropic cylindrical shell is reduced to 
a system of five differential equations (4.8) to (4.12) for the five un- 

known functions. Having obtained the latter, we will find without 

difficulty the stress resultants, as well as the stresses, by means of 

the formulas (2.32) to (2.34), (2.38) to (2.46) and (4.2) to (4.6). 

The system of equations (4.8) to (4.12) undergoes substantial simplifi- 

cation in the case of a transversely isotropic shell [lo 1. It is known 

that for a transversely isotropic solid we have 

a I6 = 0, a*$ = 0, Qt5 = a&j = 0, n4, = U&5 = -$ 

B,l = Bw = &?, B,, = pB,j, 
E 

Bw, = - 
2 (1 + I*) 

(4.13) 

where E is the modulus of elasticity in the plane of isotropy, p is 

Poisson’s ratio, G’ is the shear modulus for planes normal to the plane 

of isotropy. 

We assume the plane of isotropy of the material to be parallel, at 

each point of the shell, to the middle surface of the latter. 

The coordinates a, /3 are to be chosen in such a manner that the coeffi- 

cients of the first quadratic form assume the following values [ 1,2 3 : 

A= 1, B=K (4.14) 

By virtue of (4.13) and (4.14) the final system of equations becomes 

simpler and assumes the following form: 

(4.15) 

(4.16) 
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(4.18) 

I a2v I asw saw ---_ __ -- _-..- - xi aaap2 R”- aaag aps 

As an example we shall treat here the problem of a horizontal tube, of 
transversely isotropic material, simply supported at its ends. The tube 
is entirely filled with a liquid of specific weight y. ‘Ihe weight of the 
tube material shall be neglected [ 7,12 1. 

Measuring the angle /3 from the lowest point of the cross section of 
the tube, we use the expansions 

w=zr, C,, cos nfl sin mT , 
m n 

m n 

The chosen functions fulfil the boundary conditions of simple support 
along the edges a = 0, Q = 2, as well as the conditions of periodicity 
with the period 2n for the argument /3. ‘Ihe acting load, the radial 
pressure of the fluid, is 

P=RY(f-t-cosFd (4.21) 

It can be represented by the double series 

Z= x;Tjq,,cosnj sinmF (4.22) 

7n n 

where the coefficients q,, are given [ 7,12 ] by 

Q mn=O, 
4YR 4Yfi 

q,*= - nzx ’ 9 ml 
=- 

?l,Z 

In view of the good convergence of the expansions with respect to the 
subscript RI = 1, 3, 5, . . . we will confine ourselves in the following 
to the first term. 

Substituting the functions u, II, UJ, q5, $I from (4.201, and the function 
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z from (4.22) into the corresponding equations of the system (4.15) to 

(4.191, we obtain, for each pair of values of m and n, a system of five 

equations for the five unknown coefficients Ancn, Rnn, C,,, Dm,, Emn. In 

the special case, when n = 0, these systems undergo essential sirnplifi- 

cations. 

Let us consider the numerical example treated in [7,12 f ; take a = 
50 cm, 1 = 25 cm, h = 7 cm, while p = 0.3. For the dimensions just 

given we shall examine three cases, for which the ratio E/C' equals 2.6; 

5.0; 10.0, respectively. 

In the case E/G’ = 2.6 we have evidently to deal with an isotropic 
shell, while in the second and in the third case we have transversely 

isotropic shells. 

'Ihe values of the coefficients Cn,, of the normal displacement component 
of the shell are given in Table 1 in the form of the ratio C,,/N, where 

N = 24yR3Z2/Enh. In the last column of Table 1 are given the values of 

TABLE 1. 

0.7022 0.6708 1.3730 
2.6 0.8103 0.8004 1.6107 
5.0 0.9OOO 0.9138 1.8138 
10.0 1.0616 1.0275 2.0891 .~ _- 

the coefficient of the maximum normal displacement, i.e. the values of 

the coefficient of w at the point /3 = 0, /? = % 1. 

For comparison we give in the first line of Table 1 the values of the 

same coefficients CAJUN, where N = 24~R~l'/~~, calculated by means of 

the theory based upon the hypothesis of non-deformable normals [7,12 1. 

The comparison shows that the results obtained on the basis of the 

latter theory essentially differ from those derived from the theory 

offered in the present paper. We see that even in the case of an iso- 

tropic shell the error incurred in the classical theory (based upon the 

hypothesis of non-deformable normals) can amount to 15%. In the 

case of transversely isotropic shells the error can become quite sub- 

stantial for the case of the example considered here, depending on the 

ratio E/G’. For instance, in the case of a ratio E/G* = 10 the error just 
mentioned rises to 35%. 
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