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1. We consider a thin anisotropic shell of constant thickness h.
Assume that the material of the shell obeys the generalized Hooke's law
and that at each point there is only one plane of elastic symmetry,
parallel to the middle surface of the shell, The latter surface will be
used as surface of coordinates, and the shell will be referred to curvi-
linear orthogonal coordinates a and 8, which coincide with the principal
curvature lines of that surface. Let y represent the distance, measured
along the normal, between the point (a, B) of the middle surface and the
point (a, B, y) of the shell. We assume that

(a) the line elements of the shell, normal to the middle surface, do
not change their lengths after deformation;

(b) the normal stresses* o, are small as compared with the stresses
Gy og and TaB

(c) the shear stresses r_, and r vary in the direction of the

thickness of the shell in accordance ‘with the law of the quadratic para-
bola [13 1.

Being more rigorous in the formulation of the hypotheses [ 2,51, we
can state here the assumptions (a) and (b) in the following form:

(a) €yy = 0 approximately;

(b) the stresses o, do not exert any essential influence on the strain
components e, and e and they can be neglected in the corresponding
equations of the generalized Hooke's law.

2. By virtue of the assumption (c) concerning the shear stresses r

and f[gy we have @
o= T L X+ X+ (P )e @ B

=T+ L+ + (=) n @Y

Here and in the following we adopt the well-known notations used in
the theory of shells,
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where Xt (a, B8), Y* (a, B) and X~ (a, B), Y™ (a, B) are the components
along the axes of the moving trihedron (in the directions of the positive
tangents to the lines B8 = const., a = const., respectively) of the in-
tensity vectors of the surface loads, applied to the boundary surfaces

y = %h and y = — Y4 h, respectively, while ¢la, B), ¥/(a, B) are unknown
functions. Substituting the values of the tangential stresses r__ and "By
from (2.1) into the corresponding equations of the generalized %oke's
law [6 ], we obtain for the shear strain components €y and €3y the
formulas

~ , i o h?
8mY=X+7§‘X +T(T_-;")q}l(“r B)

. 2 (2.2)
. , 3
*‘33*{:} + ";{L_Y +”~‘Z‘“<Y2 __4‘)@2(“’ B)
Here we have introduced the following notations:
X:%[a“(X*——-X‘)—}—am(Y*—Y”)] 2.3)
Y = % (a4 (Y —Y7) + a5 (X7 — X))
X' =ap (X" + X))+ o (YT + 1)
; . (2.4)
Y =auy (YT + Y+ a(XT+ X0)
®; = a59 + a5, Dy = asqp + ag59 (2.5)

where the quantities a;, are elastic constants [6].

From the equations of the three-dimensional theory of elasticity we
have for the strain components [ 1]

1 Ou, 1 0H, 1 8H,
= -5yt as e + 5y (2.6)
19wy 4 4H, g1 oH, ’
Ces =, a3 T H, oy Y T HH, oa *
du
eYY - 5—3 (2-7)
Hy o 1 N, Hy 0 1 )
e =155 (7 ) + 2 o (1 8 (2-8)
o 1 1 9
eor = H, '517(7?; ”‘3> + 71,38 W 2.9)
=12 v H 2 <_1_ u ’
va ==, 5g ¥ 150\ T, “)
Hi=A(l +ky), Hy=B( +ky) (2.10)

In these formulas A = Ala, 8) and B = Bla, B) are the coefficients of



On a general theory of anisotropic shells 307

the first quadratic form of the middle surface, k1 =k, (a, B) and

kz = kz(a, B) are the principal curvatures of the middie surface,

u, = u la, B, y), ug = uﬁga, B, y).and ;y = u (a, Bs y) are_the Qisplace-
ment components of an arbitrary point of the shell in the directions of
the tangents to the coordinate lines, respectively.

On the basis of the assumption (a) we find from (2.7)

BuY

?3?=0, Uy = uy (2, B) =wix, B) (2.11)
This, like in all existing theories of thin shells, the displacement
of any point of the shell is independent of the coordinate y. This

displacement component has for all points of a line element of a normal

to the shell a constant value, equal to the normal displacement component

v = wla, B) of the corresponding point of the middle surface of the shell.

Substituting the expressions for e_ , s H,, H, and from (2.2),
(2.10) and (2.11) into equations (2.93{ we 'obtain differential equations
for the displacement components u, and ug. Integrating these equations
and taking into consideration that u, = ula, ) and ug = v(a, B) when

y = 0, we find

el ky\ R
o= +hyu— 5 —v(14+y3) T Ot

+r(t )T Qv (1 v X e (L ) X

" (2.12)
k.
ug = (1 + kyy) o — - %’"— —y(l +Y_;)_8 ®,+

o) o) (1 e )

where u = ufa, B), v = vla, B) are the tangential displacement components
of the corresponding point of the middle surface.

In the process of deriving the formulas (2.12) the accuracy was being
confined to consideration of quantities up to those of the order of
magnitude of yk;, i.e. whenever a sufficiently precise estimation was
possible, terms of the order of magnitude of (yk,)? were being neglected
in comparison with unity.

Our formulas (2.12) show that, in contrast to known theories of thin
shells [1,2,5,7 ], the tangential displacement components u_ and ugp of
any point of the shell at a distance y from the middle surface are, in
the case considered here, as in the publications [ 8,9 1, non-linear
functions of the distance y.

By virtue of (2.12) the strain components e_,_, eqp, €.o can be ex-
T aa’ BR* “aff
pressed by polynomials in powers of y, namely
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€an = & + Y1 + Y + Y0 + v
€pp = 5 + s + Y270 + ¥y -+ ¥E, (2.13)
eap = @+ YT+ ¥ 4 y3h 4 v
Substituting the values of u,, ug, u, from (2.12) and (2.11), respect-
ively, into the relations (2.6) andﬂ(2.§), and comparing the resulting

expressions for the strain components e, ., egg, € with the corres-

ponding expressions (2.13), we obtain the following formulas for the
coefficients of the expansions:

1 84

—eo— 0w 1 04 ;
) == g = A 5@ + ABE}S v + klw (2.14}
1 dv 1 aB -
=0 = gy T ogp gt T (2.43)
o A 0_4 [ u B 0 v
o= =G5+ T a5 (2.16)
o R /1 8y 1 (?ii 1 X 1 64

a=n— g (a5t up )t tara ) (1D

. k2 (1 ID, 1 4B

] 1 .
w=x'— g (57 + apEa @)t T T apa X 219

s RhTA & /0 B 8 /D A 8 /X B a3 /Y 4,
=~ w5 (h) T (B Fa(E) + Ta(r) e
1 0k 1 a8 1 dw
'q1=—-k1-71——%’?u+k1-2-;9—;( o
1 04 dw , k[, 1 o® 1 ok
+ kg g 55+ E T e — P+

h 1 1 04 1 1 ax 1 ok
+ 5 (= k) ®— g (e — G X)"“ (2.201
1

1 04, 1 1 X’ 1 1 04 .,
*z—"e) —Bw! tma o twar Y

o=~ ko 520 + ks 5 o (7 55) F
T R Tk Ok
+ 2 (ke — k) g @ — 5 (ke 3y — 3 ¥)— 2.21)
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1 8 1 dw 1 48 1 8w
'=’f273—£(7r“55)+"173;(75§,—
1 OB dw 1 0A4dw

—h e s M TEe G T

RT1 ) 1 [dk 1 34

+ 75 [ 2 — k) G — (5 + k) O+
h

+

e 1 AW, 1 ok 1 8B
18 | 2k — k) G2 — (G + 5 T k) O] +

—
L

119 0X 1 a4
1reé Y i B

S R e 20

Y’ (2.23)

1 Bk
T B

— (K iﬂ?i~7-§ﬁf2}")_i(k2_ikl>i OB x+ (2.24)

1
P 0,2k,

"B 83 a3 2k 3 AB 3a
_ b1 ey 1 1 94 1 1 00,
‘=T Fm s Ut A
1 1 4B 1 i1 1 @ , 1 1 X’
— 5 apa Ot 7[5 F o WX )= Ry Gy +

11__1_8

(2.25)

. 1 3k 1 1 94 [k 1 1 o0
b= g Ot s p 3 — k) P g G (2.26)
11 Bk 1 1 0B [k 1 1, 0,
=53 Qt s A (o — k) O kG (2.27)
L= 1 _1_” ) oD, 1 1 04

2 1
T 5 (5, @) — e kg'gg"‘ & A k1®1]+
1 @

da

8, i1 1 4B
a7 a®) — 5 b T 4 1 G ] (2.28)
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In formulas (2.17) to (2.19) we have, in conformity with the usual

definition of curvature changes and torsion of the middle surface of the
shell [2,51,

o 1 9 1 dw u 1 A7 1 ow v

= G — ) T ame (g ) @)
° 1 0 71 dw v 1 8B {1 ow W

== g or (T 55 — )~ B g\ —w) (230
° 2 a%w 1 84 dw 1 8B dw

7 (% 35 " A 95 a T B o 'ag?) +

2 (1 104 \, 2 (1t o 1 0B
+ (505 ~ap s %)+ (e — an e %) (2.31)
where R, = R, (a, B) and R, = R,(a, B) are the principal radii of curva-
ture of the middle surface.

Considering the expansions (2.13) we note that they have some similar-
ity with the analogous expansions used in ref. [ 1]; the similarity is,
however, only a superficial one. In the determination of the strain com-
ponents e, ., egg, € ref. [1] actually uses expressions in terms of
powers of y keeping at the same time the hypothesis of non-deformable
normals { 1,2 ], while in the present paper, as in the publications [8,91],
the relations (2.13) are being obtained on the basis of the basic
assumptions of the theory offered here.

On the basis of (2.13) and of the original assumption (b) we derive
from the generalized Hooke's law the following expressions for the stress

components g, , Oﬁﬁ s raB :

Gux == Bi&; + Byags + By + ¥ (Buty + Bioxe +
+ Byg?) + ¥ (Bum + B + Biey) +¥° (Bub: +
+ B1aBa 4 Bygh) + v* (Braky + Buobs + Biel) (2.32)

sgp = Bagty + Biagy + Baew + ¥ (Baevs + Braxy +
+ st")_ + ¥2 (Bagf ++ Bia%y + Bagv) + ¥° (Basby +
+ Byaby - Bagh) + v (Basks + Bk + Bagl) (2.33)
Tapg = Bigey + Byger + Bggw» + 'Y(Blexl + Bagxs + Bes‘c) +

+ v? (B1e¥a + Beez + Beyv) +¥° (31691 + Biyghy 4 Bggh) +
+ ‘{4 (Bméx + B‘zee‘a + Bggl) (2-34)

In these formulas the constants B, are given by the following express-
ions in terms of the elastic constants a;, [10,11 1:

Ayl — Gog° _ Gypfag — Q1204 B, = 12896 — Q22014
Bll = Q ] Bl‘.’. = Q s 16 — Q
ay30g — Q16° 2 32818 — G138
By, = 11888 16 By = 12918 - 11828 (2‘35)

fdyiflgg ~—— i3
Bas =
2 2 2
Q = (a31853 — @157) Ggg + 2012054055~ Qy1026” — Aa94

Y

Q ¥
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The stresses ¢, o B TaB’ Tayr "By produce internal forces (T,,

T,, $;, S;, N, N,) and moments (Ml’ M., ‘H), which must satisfy the

following satitical conditions [1, 2, § 1:
P B 8 a4 .

@ . 04 a aB N

o5 AT = To 35+ 2 (BS) + 5,55 + ABkN, = — ABY

— T3+ 0Ts) + o | BN+ 55 (AN9)] = —2° (2.36)

o8

i)
E(BH) +H 3a

7] A
+ o (M) — M, % — 4BN, = 0
a aA é a,
5 (AH) + B + - (BM) — M, 2 _ABN,=0

Sl—Sg + le'—kzy == 0
In these formulas the symbols

X=X 8, Y=Y(@p Z'=2(@,F8)

represent the components of the intensity vector of the applied surface
load, referred to the middle surface of the shell [7 1, namely

pe e &) )+ (- )i ) e

where P stands generally for X, Y, Z.

The stress resultants appearing in (2.36) are determined in the usual
manner [ 1, 2, 10 1. Without going into details, we give here the simplest
elasticity formulas, which identically satisfy the sixth equation of
statics:

h? ht h? K
Iy=0Cy (81 t g+ g ¢1) + 012(52 + "i'%"’lz + g}% ¢2) +
h?
+Cro(0+ g5+ %) (2.38)
h? h#
Ty= 622(32+ 1_12_1}2 + ‘8352> +Cy (51 + %"h + 38%'21\) -+
h? ht
4 Cag (m + 172+ 559 (2.39)
. h .
Sy = Cig(e; + ’{;— T+ ‘%;"Csw + Cy (&72 + *g"”}z + -g% Eg) +
5 ht - 71 1
+C“(w + At 'g@“‘:) + &y LC“ <“g”xx + !82_0- 61) +Cze(—;z*;‘x2 + %};— 82) +
h? he
+ Cyq (Tz“ o a)] (2.40)
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h? ht h? ht
Sy = Cag (52 + 5t gy 52) +Cy <E1 + 5+ g@‘ﬁ)‘f‘
h4

+ Coq ({; T x)] (2.41)
M, =D, (xl + 2 ) +Dss (xz + 3 92) + Dy (= + R 1) (2.42)
My =D, (xz + ‘%P:)i 62> + Dy, ("1 T %%‘2‘ 51) + Dy (’5 + %%‘2‘ ') (2.43)

h3 3ht
Hy=H, =H=Dm(xx + %0‘“91) +Dze<"2 + ‘25“92)+

s (2.44)
+ Dy (v + 55 1)

Ny=—2 (Xt —X)— 2 o(p) (2.45)

Ny= 2 (0" —¥) — () (2.46)

In these relations we have the following formulas for the rigidity

constants C;, of compression and D;, of bending:
8
Cow = hBu, Din= 15 Bu (247)
We state here that, in the process of substitution of the values of
€40 voey {, all terms containing X and Y can be omitted, still maintain-
ing a sufficiently high degree of accuracy [7], in all elasticity
relations.

Using the formulas (2.29), (2.30), we can eliminate the displacement
components u, v, w of the middle surface from the relations (2.14) to
(2.16); this leads to

. 1 8(1[poe , OB , A o 04
ko bo” + g 55 L (B o+ ) — 5 5 — 5 o)t +

1 4 {1 e dA B dw aB
+-—A~B-‘5B~{—B-~[A?g—+-a—é (€1—82)""—§"—63——~a~a— m}}:g (2.48)

The equation (2.48) is the third continuity relation for the deforma-
tion of the middle surface of the shell. As it should be expected, the
relation does not differ in any way from the corresponding relation of
the classical theory of thin shells [2, 5]. The remaining two conditions
of continuity for the deformation of the middle surface will not be
needed in the present paper.

The equations (2.14) to (2.31), (2.36), (2.38) to (2.46) taken to-
gether represent a complete system of equations of the theory of shells.
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It is known [1,2,5] that such a complete system can be established in
various ways. In view of its extreme complexity in the general case of a
shell of arbitrary form, the complete system of equations will be con-
sidered here for one practically important type of shell only.

In the process of solving actual boundary value problems the differ-
ential equations of the shell have to be completed in the usual manner by
statement of the boundary conditions [1,2,3].

3. Avoiding discussion of details, we mention here some possible
special types of boundary conditions.

Free edge. This designation will characterize such an edge (a = const.)
of the shell, for which

M1=0, H—‘:O, S1=O, T1=0, N1=O (3-1)

Simply supported edge. This designation will be used for such an edge
(a = const.) of the shell, for which

Ml - 0, Tl = 0, w= O, V= O, Bllel + B1262 + Blﬂl‘ - 0 (3-2)

Fixed edge with a hinge. This designation characterizes such an edge
(@ = const.) of the shell, for which

My=0, u=0, »=0 w=0 ¢=0 (3.3)

Clamped edge. This designation refers to such an edge (a = const.) of
the shell, for which

u=0, »=0, w=0, ¢=0

1 0 h?
2kt 2o =0 (3.4)

Of course, other boundary conditions are still possible.

The boundary conditions for an edge 8 = const. can be stated in an
analogous manner.

Concluding this Section we note that the subject of the boundary con-
ditions requires special investigations.

A detailed study of the results presented in the first three Sections
of this paper reveals the following fact: the special case, characterized
by ay, = 0, agg = 0, ay, = 0, leads to the basic relations and equations
of the theory of anisotropic shells based upon the hypotheses of non-
deformable normals.

4. Consider a shell in the form of a circular cylinder of radius R.
We take the a and B coordinate lines to be directed along the generators
and the parallel circles of the middle surface, respectively. Assume
that the shell is being acted upon by normally applied loading only. For
such a shell
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A=const, B=const, ¥k; =0, ky, = —;— (4.1)
The coefficients of the expansions (2.13) are
1 Ou 1 ov 1 ou 1 v
N=T % 2T Fa TR =5 taTw “?
5 __}mazw_ji 1 o,
1T T A2 940 8 A4 Ba
L w4 4w 1 oo, *3)
2T TB*ogr R BaAp T 8 B 83
_ 2 w2 4 9 R1aD , 18D
= P es TR Ada 8 (B a;a'*‘i?ﬁ”)
— 1 1w B4 10D,
=1 ’72‘332632 16 R B 98 44
11 e (o 4 00 1 o0, (4
*RABaaas 16Rk B A'aa)
1 1o, L 10, 180,
b =57 5a - = $5733 h=¢g o TEA s (&)
. RN 418D | 1 8D
9=0  &L=—g x5 C‘“é’ﬁ(”i?‘ % T id “‘é’&”) (4-6)

The equations of equilibrium assume the form

1 9T, 1 98, 1 0H 1 oM, _
A 6a+§5§“0’ A tFE 88 —N=0
19T, | 188, 1 08H | 1 aM,

161\11 1 8N, 1 _
Aaa+B ey RTﬁ“"Z

Substituting the expressions for ¢,, ..., ¢ from {4.2) o (4.6) into
the formulas (2.38) to (2.46), we obtain the stress resultants in terms
of the unknown functions u, v, w, ¢, . Substituting the obtained express-
ions of the stress resultants into the equations of equilibrium (4.7), we
find a final system of the five differential equations for the five un-
known functions u, v, w, &, ¥, namely

1 @ ., 1 0
Vi (Cix)u + Va (Cik) v {01273’; + Cos g 33 T
v i 1 o3
[(Cl”‘*‘ Cos) 1w AB2 6a859 + Cis o5 60:-8{3‘ t Cos s 5 ]} +

4+ Qs (Cir» air) ¢ + Q5 (Cirsaix) e =0 (4.8)
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1
Ve(Cixyu + Va(Cir)v + {C”%T% + C%-“—{ 52— +

n 1 99 | 8 1@ LI | G
-+ 19 [622'§ FER Clﬁ AT 5as + C’G AB* 31332 CGG AB 64263]}_}{— T

+R4( i @) P + Ry (Cu;,(lik)0=0 (4.9)
1 8 (7
w

+ [62" + 13 (622 B 632 + C"s 4B 32 aa)
+ Py (Cixsair)§ + P (Cir, ain) o = 2 (4.10)

1 o2 {1 o i a2 »
(D2 332+ 2Dw 55 + 30w 35 550 ag)"f{ -
—E, (Dik) w— Sy (Di:n ) $ — S5 Dy ay) 0 =0 (4.11)

a‘)
[Dze B agz + 21—)16 Az aag + (2066 + Dlz) AB 0(133]% -
—~E1(D¢1,~)W——-K4( u,-yam)tP As (Dzky azk)?=0 (4.12)
where
32
Vi (Ci) = Cua 5 aa- +Cu s aa“ e+ 2C AB 3203
2
V2 (Cix) = 622'}373 5‘@‘3 + Cge ';p‘g—g + 2626 7473 5233

1 02
Ve (Cﬂ-) = Cls 42 aaz + (CI" '+' CBG) AB aaag + Cas Bo (93

E1 (D) =D 5 53 + Do 255 7533 +
1 o
AB~ 618%2 +Des B 938

1 o
Ey (Dix) = Dy B3 ans 55 + 3D AB? 53%a +

1 9%
+ (DIZ + ZDss) BA2 33&1" + 16 43 5{.‘3

(Dm -+ 2[)63)

. h? 3ht 1 4
Pi (Cix, ap) = [(i — 4) iz — Cas 64(;1{2 ] T+
1

, ht ( C C ) 5 &
T 1120R® \16 2204i + Caeis ( - )—15' B 54
. h? ht 7 1 8%
ji’i (Ciky ai;‘-) == (L -_ 5) rz-*i{ + mﬁ [(Té C22a4i + C%ai5 ~]—3,—2< -—aw‘é? —
9 1 o2 5 1 o2
— g Cootlsi 55 5755 — \/16 Costai + C“““‘) D 6a2]
4 7 9 g%
Q (Csk: a:k) 1203[ 16 Cl2a4i - 16 66“41 + Clsats) 8&88

9 1 1 o
— 16 (o4 57 oaz F (16636”‘“ + C“““) 13057 ]
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Si (Digr ) = T {(Dm“:s + Dggagi) Ao d - + (2D3604; + Dgottis +

D 92 1 07 , h3
+ Dygtis) ‘;@5;5;' + (Daetyi + Dygtis) ﬁi'ﬁj = (0= 9)

1
K; (Dik, aix) = 10 [(Dna:s -+ Dmam) At Baz + (2D ga:5 + Dsaau -+

92 , o
+ Dyaas) ZEW + (Daglai - Degttis) "B—z_a?;] +(i—4) ﬁ

Thus, the problem of the anisotropic cylindrical shell is reduced to
a system of five differential equations (4.8) to (4.12) for the five un-
known functions. Having obtained the latter, we will find without

difficulty the stress resultants, as well as the stresses, by means of
the formulas (2.32) to (2.34), (2.38) to (2.46) and (4.2) to (4.6).

The system of equations (4.8) to (4.12) undergoes substantial simplifi-
cation in the case of a transversely isotropic shell [10 ]. It is known
that for a transversely isotropic solid we have

i
a15=0, =0, t3=01=0, a=05=1
E E
By = By = T2 By = By, Bgs = —‘—2(1 T (4-13)

where E is the modulus of elasticity in the plane of isotropy, p is
Poisson's ratio, G’ is the shear modulus for planes normal to the plane
of isotropy.

We assume the plane of isotropy of the material to be parallel, at
each point of the shell, to the middle surface of the latter.

The coordinates a, f3 are to be chosen in such a manner that the coeffi-
cients of the first quadratic form assume the following values f1,21:

4=1, B=R (4.14)

By virtue of (4.13) and (4.14) the final system of equations becomes
simpler and assumes the following form:

u 11—y %u 14 o% @ dw {1-{—;&)122 83w
BFar + IR 2R? 93¢ + R 2R oa 63+ R Ga + T2ARS 6a832+

23u —9 ke 0% 1—p ht fe o)

T3840 R U4 5598 T 20 HS 443%2 =0 (4.15)
14w 0% }—u 0% 1 % 1 ouw A
2K JadB + 5 g T Regpe + 5 35 + T ap3
(1 —w)h? 8% | Tht P S—wht
T TZ4R® dq%05 ' 1020R® 1 g4t T T68R Hagz ™
(1 — p2) b
S b= (4.16)
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w G 1 v ht 0w Ths &y

Ko TR ‘8B + Rz + 12R" 83 " 1920R% T +
(1 —u2) A 4» (—up2)h? de 1—p?
+ ~TEn + E 90— Eh 2 (4.17)
1—p 8% 1 9% 1 &w 1 &%w 1—.u¢
"R 8 U R4 TR 0a28(3 R aps + ‘”"
h? 11— pd% Y | 14u %
*"1’6“44( T gm T R26132+ 2R aaas) 0 (4.18)

1 o 1 P Fw
R*0ad3 T R*0adgt 0B

Bt (4w %, 0% | 1- w1 9%\ 1_9
——13&“( 2R 6(:6{5 + 5a Fro + — P 32332}‘{‘ P == 0 (4.19}

As an example we shall treat here the problem of a horizontal tube, of
transversely isotropic material, simply supported at its ends. The tube
is entirely filled with a liquid of specific weight y. The weight of the
tube material shall be neglected [ 7,12 1.

Measuring the angle 8 from the lowest point of the cross section of
the tube, we use the expansions

mnra
u:EZAmncosnﬁcos —
m B

o Z 2 D, cos n3 cos T x m’m

»= Ef 2 B, sinnfsin mvl:a . (4.20y
m $= Z ZEmn sin n8 sin --—-m;m

mm
w= 2 2 Cn €08 R3 sin 20

The chosen functions fulfil the boundary conditions of simple support
along the edges a = 0, a = I, as well as the conditions of periodicity
with the period 27 for the argument . The acting load, the radial
pressure of the fluid, 1is

g =Ry (14 cosB) {4.21)
It can be represented by the double series
Z= Z 2 Qepn COS N3 8IR T mm‘ (4.22)

where the coefficients q_, are given [7,12 ] by
dyR 4yR
"m=0, qmoz:: ——.‘T_I?'C—’ q'mlzﬁ (4.23)

In view of the good convergence of the expansions with respect to the
subscript m= 1, 3, 5, ... we will confine ourselves in the following
to the first term.

Substituting the functions u, v, w, &, ¢ from (4.20), and the function
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z from (4.22) into the corresponding equations of the system (4.15) to
(4.19), we obtain, for each pair of values of m and n, a system of five
equations for the five unknown coefficients Apnr Bunt Cant Ppnr Epne In
the special case, when n = 0, these systems undergo essential simplifi-
cations.

Let us consider the numerical example treated in[7,121; take a =
50 em, I=25cm h=7cm whilep = 0.3, For the dimensions just
given we shall examine three cases, for which the ratio E/G” equals 2.6;
5.0; 10.0, respectively.

In the case E/G” = 2.6 we have evidently to deal with an isotropic
shell, while in the second and in the third case we have transversely
isotropic shells.

The values of the coefficients C,, of the normal displacement component
of the shell are given in Table 1 in the form of the ratio Cmn/N, where
N= 24yR312/Ehh. In the last colum of Table 1 are given the values of

TABLE 1.
o
E 10% 104 104
@ | & N Cu N

0.7022 0.6708 1.3730
0.8103 0.8004 1.6107
0.9000 0.9138 1.8138
1.0616 1.0275 2.089¢

w oLt
[we el e

10.

the coefficient of the maximum normal displacement, i.e. the values of
the coefficient of w at the point 3=0, B=Y%1.

For comparison we give in the first line of Table 1 the values of the
same coefficients cmnAw, where N = 24y3312/Ehh, calculated by means of
the theory based upon the hypothesis of non-deformable normals [ 7,12 1.

The comparison shows that the results obtained on the basis of the
latter theory essentially differ from those derived from the theory
offered in the present paper. We see that even in the case of an iso-
tropic shell the error incurred in the classical theory (based upon the
hypothesis of non-deformable normals) can amount to 15% In the
case of transversely isotropic shells the error can become quite sub-
stantial for the case of the example considered here, depending on the
ratio E/G’. For instance, in the case of a ratio E/G” = 10 the error just
mentioned rises to 35%.
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